Hodge type of subvarieties of compact hermitian symmetric spaces.
Pedro L. Del Angel (1996)
Mathematische Zeitschrift
Conjeerveram Srirangachari Seshadri (1958/1959)
Séminaire Claude Chevalley
Patrice Philippon (1986)
Bulletin de la Société Mathématique de France
Daniel Bertrand, David Masser (1980)
Inventiones mathematicae
G. Wüstholz, A. Baker (1993)
Journal für die reine und angewandte Mathematik
Hanspeter Kraft, Claudio Procesi (1980/1981)
Inventiones mathematicae
Antonella Perucca (2010)
Acta Arithmetica
R.W. Jr. Richardson (1972)
Inventiones mathematicae
Burt Totaro (2013)
Annales scientifiques de l'École Normale Supérieure
Chevalley’s theorem states that every smooth connected algebraic group over a perfect field is an extension of an abelian variety by a smooth connected affine group. That fails when the base field is not perfect. We define a pseudo-abelian variety over an arbitrary field to be a smooth connected -group in which every smooth connected affine normal -subgroup is trivial. This gives a new point of view on the classification of algebraic groups: every smooth connected group over a field is an extension...
Stéphane Fischler, Michael Nakamaye (2014)
Annales de l’institut Fourier
In this article we study interpolation estimates on a special class of compactifications of commutative algebraic groups constructed by Serre. We obtain a large quantitative improvement over previous results due to Masser and the first author and our main result has the same level of accuracy as the best known multiplicity estimates. The improvements come both from using special properties of the compactifications which we consider and from a different approach based upon Seshadri constants and...
F. Knop, H. Lange (1985)
Commentarii mathematici Helvetici
Michel WALDSCHMIDT (1973/1974)
Seminaire de Théorie des Nombres de Bordeaux
Daniel Bertrand (1979/1981)
Groupe de travail d'analyse ultramétrique
Dragos Ghioca, Thomas Tucker, Michael E. Zieve (2011)
Journal de Théorie des Nombres de Bordeaux
The Mordell–Lang conjecture describes the intersection of a finitely generated subgroup with a closed subvariety of a semiabelian variety. Equivalently, this conjecture describes the intersection of closed subvarieties with the set of images of the origin under a finitely generated semigroup of translations. We study the analogous question in which the translations are replaced by algebraic group endomorphisms (and the origin is replaced by another point). We show that the conclusion of the Mordell–Lang...
Daniel BERTRAND (1982/1983)
Seminaire de Théorie des Nombres de Bordeaux
V. Cristante (1980)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Michel Waldschmidt (1972/1973)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Michel Waldschmidt (1975/1976)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Michel Waldschmidt (1970/1971)
Séminaire de théorie des nombres de Bordeaux
Karl Hofmann, Sidney Morris, Markus Stroppel (1996)
Colloquium Mathematicae
In this paper we answer three open problems on varieties of topological groups by invoking Lie group theory. We also reprove in the present context that locally compact groups with arbitrarily small invariant identity neighborhoods can be approximated by Lie groups