Displaying 281 – 300 of 396

Showing per page

Reductive group actions on affine varieties and their doubling

Dmitri I. Panyushev (1995)

Annales de l'institut Fourier

We study G -actions of the form ( G : X × X * ) , where X * is the dual (to X ) G -variety. These actions are called the doubled ones. A geometric interpretation of the complexity of the action ( G : X ) is given. It is shown that the doubled actions have a number of nice properties, if X is spherical or of complexity one.

Schubert varieties and representations of Dynkin quivers

Grzegorz Bobiński, Grzegorz Zwara (2002)

Colloquium Mathematicae

We show that the types of singularities of Schubert varieties in the flag varieties Flagₙ, n ∈ ℕ, are equivalent to the types of singularities of orbit closures for the representations of Dynkin quivers of type 𝔸. Similarly, we prove that the types of singularities of Schubert varieties in products of Grassmannians Grass(n,a) × Grass(n,b), a, b, n ∈ ℕ, a, b ≤ n, are equivalent to the types of singularities of orbit closures for the representations of Dynkin quivers of type 𝔻. We also show that...

Currently displaying 281 – 300 of 396