The gonality of general smooth curves with a prescribed plane nodal model.
We are concerned with the set of all growth exponents of regular functions on an algebraic subset V of . We show that its elements form an increasing sequence of rational numbers and we study the dependence of its structure on the geometric properties of V.
The ring of projective invariants of ordered points on the projective line is one of the most basic and earliest studied examples in Geometric Invariant Theory. It is a remarkable fact and the point of this paper that, unlike its close relative the ring of invariants of unordered points, this ring can be completely and simply described. In 1894 Kempe found generators for this ring, thereby proving the First Main Theorem for it (in the terminology introduced by Weyl). In this paper we compute...