Caractérisations de l'espace projectif (conjectures de Hartshorne et de Frankel)
In this work we compute the Chen–Ruan cohomology of the moduli spaces of smooth and stable -pointed curves of genus . In the first part of the paper we study and describe stack theoretically the twisted sectors of and . In the second part, we study the orbifold intersection theory of . We suggest a definition for an orbifold tautological ring in genus , which is a subring of both the Chen–Ruan cohomology and of the stringy Chow ring.
Le but de cet article est de proposer une nouvelle méthode pour des études dans le cadre de la théorie des “dessins d’enfants” de A. Grothendieck de certaines questions concernant l’action du groupe de Galois absolu sur l’ensemble des arbres planaires.On définit l’application qui associe à chaque arbre planaire à arêtes, une courbe hyperelliptique avec un point de -division. Cette construction permet d’établir un lien entre la théorie de la torsion des courbes hyperelliptiques et celle des “dessins...
We use combinatorics to describe the topology of a singular irreducible plane curve germ f = 0 under small perturbation of parameters.
We consider four approaches to relative Gromov–Witten theory and Gromov–Witten theory of degenerations: J. Li’s original approach, B. Kim’s logarithmic expansions, Abramovich–Fantechi’s orbifold expansions, and a logarithmic theory without expansions due to Gross–Siebert and Abramovich–Chen. We exhibit morphisms relating these moduli spaces and prove that their virtual fundamental classes are compatible by pushforward through these morphisms. This implies that the Gromov–Witten invariants associated...