The Nullstellensatz for real coherent analytic surfaces.
It is a classical result, first established by de Jonquières (1859), that generically the number of conics tangent to 5 given conics in the complex projective plane is 3264. We show here the existence of configurations of 5 real conics such that the number of real conics tangent to them is 3264.
Given a real closed field R, we define a real algebraic manifold as an irreducible nonsingular algebraic subset of some Rⁿ. This paper deals with deformations of real algebraic manifolds. The main purpose is to prove rigorously the reasonableness of the following principle, which is in sharp contrast with the compact complex case: "The algebraic structure of every real algebraic manifold of positive dimension can be deformed by an arbitrarily large number of effective parameters".
We show that every local polynomial diffeomorphism (f,g) of the real plane such that deg f ≤ 3, deg g ≤ 3 is a global diffeomorphism.
Let X ⊂ (ℝⁿ,0) be a germ of a set at the origin. We suppose X is described by a subalgebra, Cₙ(M), of the algebra of germs of functions at the origin (see 2.1). This algebra is quasianalytic. We show that the germ X has almost all the properties of germs of semianalytic sets. Moreover, we study the projections of such germs and prove a version of Gabrielov’s theorem.
Nous donnons une preuve géométrique du théorème d’élimination des quantificateurs pour les fonctions logarithmico-exponentielles prouvé initialement par van den Dries, Macintyre et Marker. Notre démonstration n’utilise pas de Théorie des Modèles. Elle repose sur un théorème de préparation pour les fonctions sous-analytiques.
On introduit, dans ce travail, une hypothèse sur le spiralement d’une feuille d’un feuilletage analytique réel de codimension un (hypersurface pfaffienne). On en tire des résultats très généraux de finitude du type de Khovanskii. Des exemples précis montrent la généralité de ces hypersurfaces pfaffiennes. Une description complété des bouts de telles variétés en dimension trois est donnée.
Let be a compact semianalytic set and let be a collection of real analytic functions defined in some neighbourhood of . Let be the germ at of the set . Then there exist analytic functions defined in a neighbourhood of such that , for all .
The paper is devoted to algebraic surfaces which can be obtained using a simple combinatorial procedure called the T-construction. The class of T-surfaces is sufficiently rich: for example, we construct T-surfaces of an arbitrary degree in RP³ which are M-surfaces. We also present a construction of T-surfaces in RP³ with dim H1 (RX; Z/2) > h1, 1(CX), where RX and CX are the real and the complex point sets of the surface.