Displaying 101 – 120 of 127

Showing per page

Some remarks about proper real algebraic maps

L. Beretta, A. Tognoli (2000)

Bollettino dell'Unione Matematica Italiana

Nel presente lavoro si studiano le applicazioni polinomiali proprie φ : R n R q . In particolare si prova: 1) se φ : R n R è un'applicazione polinomiale tale che φ - 1 y è compatto per ogni y R , allora φ è propria; 2) se φ : R n R q è polinomiale a fibra compatta e φ R n è chiuso in R q allora φ è propria; 3) l'insieme delle applicazioni polinomiali proprie di R n in R q è denso, nella topologia C , nello spazio delle applicazioni C di R n in R q .

Subvarieties of the Hyperelliptic Moduli Determined by Group Actions

Shaska, T. (2006)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 14Q05, 14Q15, 14R20, 14D22.Let Hg be the moduli space of genus g hyperelliptic curves. In this note, we study the locus Hg (G,σ) in Hg of curves admitting a G-action of given ramification type σ and inclusions between such loci. For each genus we determine the list of all possible groups, the inclusions among the loci, and the corresponding equations of the generic curve in Hg (G, σ). The proof of the results is based solely on representations of finite subgroups...

Sur la structure du groupe d'automorphismes de certaines surfaces affines.

Stéphane Lamy (2005)

Publicacions Matemàtiques

We describe the structure of the group of algebraic automorphisms of the following surfaces 1) P1,k x P1,k minus a diagonal; 2) P1,k x P1,k minus a fiber. The motivation is to get a new proof of two theorems proven respectively by L. Makar-Limanov and H. Nagao. We also discuss the structure of the semi-group of polynomial proper maps from C2 to C2.

Symmetric Jacobians

Michiel Bondt (2014)

Open Mathematics

This article is about polynomial maps with a certain symmetry and/or antisymmetry in their Jacobians, and whether the Jacobian Conjecture is satisfied for such maps, or whether it is sufficient to prove the Jacobian Conjecture for such maps. For instance, we show that it suffices to prove the Jacobian conjecture for polynomial maps x + H over ℂ such that satisfies all symmetries of the square, where H is homogeneous of arbitrary degree d ≥ 3.

Tame Automorphisms of ℂ³ with Multidegree of the Form (p₁,p₂,d₃)

Marek Karaś (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Let d₃ ≥ p₂ > p₁ ≥ 3 be integers such that p₁,p₂ are prime numbers. We show that the sequence (p₁,p₂,d₃) is the multidegree of some tame automorphism of ℂ³ if and only if d₃ ∈ p₁ℕ + p₂ℕ, i.e. if and only if d₃ is a linear combination of p₁ and p₂ with coefficients in ℕ.

The additive group actions on -homology planes

Kayo Masuda, Masayoshi Miyanishi (2003)

Annales de l’institut Fourier

In this article, we prove that a -homology plane X with two algebraically independent G a -actions is isomorphic to either the affine plane or a quotient of an affine hypersurface x y = z m - 1 in the affine 3 -space via a free / m -action, where m is the order of a finite group H 1 ( X ; ) .

The effect of rational maps on polynomial maps

Pierrette Cassou-Noguès (2001)

Annales Polonici Mathematici

We describe the polynomials P ∈ ℂ[x,y] such that P ( 1 / v , A v + A v 2 n + . . . + A m - 1 v n ( m - 1 ) + v n m - k w ) [ v , w ] . As applications we give new examples of bad field generators and examples of families of polynomials with smooth and irreducible fibers.

The Jacobian Conjecture for symmetric Drużkowski mappings

Michiel de Bondt, Arno van den Essen (2005)

Annales Polonici Mathematici

Let k be an algebraically closed field of characteristic zero and F : = x + ( A x ) * d : k k a Drużkowski mapping of degree ≥ 2 with det JF = 1. We classify all such mappings whose Jacobian matrix JF is symmetric. It follows that the Jacobian Conjecture holds for these mappings.

The Jacobian Conjecture: symmetric reduction and solution in the symmetric cubic linear case

Ludwik M. Drużkowski (2005)

Annales Polonici Mathematici

Let 𝕂 denote ℝ or ℂ, n > 1. The Jacobian Conjecture can be formulated as follows: If F:𝕂ⁿ → 𝕂ⁿ is a polynomial map with a constant nonzero jacobian, then F is a polynomial automorphism. Although the Jacobian Conjecture is still unsolved even in the case n = 2, it is convenient to consider the so-called Generalized Jacobian Conjecture (for short (GJC)): the Jacobian Conjecture holds for every n>1. We present the reduction of (GJC) to the case of F of degree 3 and of symmetric homogeneous...

The jacobian map, the jacobian group and the group of automorphisms of the Grassmann algebra

Vladimir V. Bavula (2010)

Bulletin de la Société Mathématique de France

There are nontrivial dualities and parallels between polynomial algebras and the Grassmann algebras (e.g., the Grassmann algebras are dual of polynomial algebras as quadratic algebras). This paper is an attempt to look at the Grassmann algebras at the angle of the Jacobian conjecture for polynomial algebras (which is the question/conjecture about the Jacobian set– the set of all algebra endomorphisms of a polynomial algebra with the Jacobian 1 – the Jacobian conjecture claims that the Jacobian...

The Łojasiewicz gradient inequality in a neighbourhood of the fibre

Janusz Gwoździewicz, Stanisław Spodzieja (2005)

Annales Polonici Mathematici

Some estimates of the Łojasiewicz gradient exponent at infinity near any fibre of a polynomial in two variables are given. An important point in the proofs is a new Charzyński-Kozłowski-Smale estimate of critical values of a polynomial in one variable.

The set of points at which a morphism of affine schemes is not finite

Zbigniew Jelonek, Marek Karaś (2002)

Colloquium Mathematicae

Assume that X,Y are integral noetherian affine schemes. Let f:X → Y be a dominant, generically finite morphism of finite type. We show that the set of points at which the morphism f is not finite is either empty or a hypersurface. An example is given to show that this is no longer true in the non-noetherian case.

The solution of the Tame Generators Conjecture according to Shestakov and Umirbaev

Arno van den Essen (2004)

Colloquium Mathematicae

The tame generators problem asked if every invertible polynomial map is tame, i.e. a finite composition of so-called elementary maps. Recently in [8] it was shown that the classical Nagata automorphism in dimension 3 is not tame. The proof is long and very technical. The aim of this paper is to present the main ideas of that proof.

Currently displaying 101 – 120 of 127