Generalized Schur complements of matrices and compound matrices.
Generalizations of the classical Schwarzian derivative of complex analysis have been proposed by Osgood and Stowe [12, 13], Carne [5], and Ahlfors [3]. We present another generalization of the Schwarzian derivative over vector spaces.
Let be a unitary space. For an arbitrary subgroup of the full symmetric group and an arbitrary irreducible unitary representation of , we study the generalized symmetry class of tensors over associated with and . Some important properties of this vector space are investigated.
Using the idea of the generating function of a matrix in an extended sense we establish a Bezoutian type formula for a matrix satisfying an intertwining relation of the form . In the particular case of classical generating functions this formula gives a simple proof of Lander’s theorem on the inverse of a Hankel matrix.
This paper presents an enumeration algorithm to generate all magic squares of order 5 based on the ideas of basic form (Schroeppel [7]) and generating vector which is extension of Frénicle Quads (Ollerenshaw and Bondi [6]). The results lead us to extend Frénicle-Amela patterns from the case of order 4 to the case of order 5, which we refer to Frénicle-Amela-Like patterns. We show that these interesting Frénicle-Amela-Like patterns appear simultaneously. The number of these patterns is also calculated....
The purpose of the Part I of this paper is to develop the geometry of Gram's determinants in Hilbert space. In Parts II and III a generalization is given of the Pythagorean theorem and triangular inequality for finite vector families.
The article deals with bundles of linear algebra as a specifications of the case of smooth manifold. It allows to introduce on smooth manifold a metric by a natural way. The transfer of geometric structure arising in the linear spaces of associative algebras to a smooth manifold is also presented.