Extension and generalization inequalities involving the Khatri-Rao product of several.
We extend a monotonicity result of Wang and Gong on the product of positive definite matrices in the context of semisimple Lie groups. A similar result on singular values is also obtained.
We give extensions of inequalities of Araki-Lieb-Thirring, Audenaert, and Simon, in the context of semisimple Lie groups.
Recently, Na Huang and Changfeng Ma in (2016) proposed two kinds of typical practical choices of the PPS method. In this paper, we extrapolate two versions of the PPS iterative method, and we introduce the extrapolated Hermitian and skew-Hermitian positive definite and positive semi-definite splitting (EHPPS) iterative method and extrapolated triangular positive definite and positive semi-definite splitting (ETPPS) iterative method. We also investigate convergence analysis and consistency of the...
We study square matrices which are products of simpler factors with the property that any ordering of the factors yields a matrix cospectral with the given matrix. The results generalize those obtained previously by the authors.
A symmetric positive semi-definite matrix is called completely positive if there exists a matrix with nonnegative entries such that . If is such a matrix with a minimal number of columns, then is called the cp-rank of . In this paper we develop a finite and exact algorithm to factorize any matrix of cp-rank . Failure of this algorithm implies that does not have cp-rank . Our motivation stems from the question if there exist three nonnegative polynomials of degree at most four that...
In this paper we present a nonsingularity result which is a generalization of Nekrasov property by using two different permutations of the index set. The main motivation comes from the following observation: matrices that are Nekrasov matrices up to the same permutations of rows and columns, are nonsingular. But, testing all the permutations of the index set for the given matrix is too expensive. So, in some cases, our new nonsingularity criterion allows us to use the results already calculated...
We study some geometric properties associated with the -geometric means of two positive definite matrices and . Some geodesical convexity results with respect to the Riemannian structure of the positive definite matrices are obtained. Several norm inequalities with geometric mean are obtained. In particular, we generalize a recent result of Audenaert (2015). Numerical counterexamples are given for some inequality questions. A conjecture on the geometric mean inequality regarding pairs...
It is shown that the asymptotic stability of positive 2D linear systems with delays is independent of the number and values of the delays and it depends only on the sum of the system matrices, and that the checking of the asymptotic stability of positive 2D linear systems with delays can be reduced to testing that of the corresponding positive 1D systems without delays. The effectiveness of the proposed approaches is demonstrated on numerical examples.
Let S be a given set consisting of some Hermitian matrices with the same size. We say that a matrix A ∈ S is maximal if A − W is positive semidefinite for every matrix W ∈ S. In this paper, we consider the maximal and minimal inertias and ranks of the Hermitian matrix function f(X,Y) = P − QXQ* − TYT*, where * means the conjugate and transpose of a matrix, P = P*, Q, T are known matrices and for X and Y Hermitian solutions to the consistent matrix equations AX =B and YC = D respectively. As applications,...