Some results on the group inverse for block matrices over skew fields.
For an m × N underdetermined system of linear equations with independent pre-Gaussian random coefficients satisfying simple moment conditions, it is proved that the s-sparse solutions of the system can be found by ℓ₁-minimization under the optimal condition m ≥ csln(eN/s). The main ingredient of the proof is a variation of a classical Restricted Isometry Property, where the inner norm becomes the ℓ₁-norm and the outer norm depends on probability distributions.
Let T = {z1, z2, . . . , zn} be a finite multiset of real numbers, where z1 ≤ z2 ≤ · · · ≤ zn. The purpose of this article is to study the different properties of MIN and MAX matrices of the set T with min(zi , zj) and max(zi , zj) as their ij entries, respectively.We are going to do this by interpreting these matrices as so-called meet and join matrices and by applying some known results for meet and join matrices. Once the theorems are found with the aid of advanced methods, we also consider whether...