Page 1 Next

Displaying 1 – 20 of 25

Showing per page

Determinant evaluations for binary circulant matrices

Christos Kravvaritis (2014)

Special Matrices

Determinant formulas for special binary circulant matrices are derived and a new open problem regarding the possible determinant values of these specific circulant matrices is stated. The ideas used for the proofs can be utilized to obtain more determinant formulas for other binary circulant matrices, too. The superiority of the proposed approach over the standard method for calculating the determinant of a general circulant matrix is demonstrated.

Determinant Representations of Sequences: A Survey

A. R. Moghaddamfar, S. Navid Salehy, S. Nima Salehy (2014)

Special Matrices

This is a survey of recent results concerning (integer) matrices whose leading principal minors are well-known sequences such as Fibonacci, Lucas, Jacobsthal and Pell (sub)sequences. There are different ways for constructing such matrices. Some of these matrices are constructed by homogeneous or nonhomogeneous recurrence relations, and others are constructed by convolution of two sequences. In this article, we will illustrate the idea of these methods by constructing some integer matrices of this...

Determinants and inverses of circulant matrices with complex Fibonacci numbers

Ercan Altınışık, N. Feyza Yalçın, Şerife Büyükköse (2015)

Special Matrices

Let ℱn = circ (︀F*1 , F*2, . . . , F*n︀ be the n×n circulant matrix associated with complex Fibonacci numbers F*1, F*2, . . . , F*n. In the present paper we calculate the determinant of ℱn in terms of complex Fibonacci numbers. Furthermore, we show that ℱn is invertible and obtain the entries of the inverse of ℱn in terms of complex Fibonacci numbers.

Determinants of matrices associated with incidence functions on posets

Shaofang Hong, Qi Sun (2004)

Czechoslovak Mathematical Journal

Let S = { x 1 , , x n } be a finite subset of a partially ordered set P . Let f be an incidence function of P . Let [ f ( x i x j ) ] denote the n × n matrix having f evaluated at the meet x i x j of x i and x j as its i , j -entry and [ f ( x i x j ) ] denote the n × n matrix having f evaluated at the join x i x j of x i and x j as its i , j -entry. The set S is said to be meet-closed if x i x j S for all 1 i , j n . In this paper we get explicit combinatorial formulas for the determinants of matrices [ f ( x i x j ) ] and [ f ( x i x j ) ] on any meet-closed set S . We also obtain necessary and sufficient conditions for the matrices...

Diffeomorphisms of Rn with oscillatory jacobians.

Waldyr M. Oliva, Nelson M. Kuhl, Luiz T. Magalhâes (1993)

Publicacions Matemàtiques

The paper presents, mainly, two results: a new proof of the spectral properties of oscillatory matrices and a transversality theorem for diffeomorphisms of Rn with oscillatory jacobian at every point and such that NM(f(x) - f(y)) ≤ NM(x - y) for all elements x,y ∈ Rn, where NM(x) - 1 denotes the maximum number of sign changes in the components zi of z ∈ Rn, where all zi are non zero and z varies in a small neighborhood of x. An application to a semiimplicit discretization of the scalar heat equation...

Directed forests with application to algorithms related to Markov chains

Piotr Pokarowski (1999)

Applicationes Mathematicae

This paper is devoted to computational problems related to Markov chains (MC) on a finite state space. We present formulas and bounds for characteristics of MCs using directed forest expansions given by the Matrix Tree Theorem. These results are applied to analysis of direct methods for solving systems of linear equations, aggregation algorithms for nearly completely decomposable MCs and the Markov chain Monte Carlo procedures.

Distance matrices perturbed by Laplacians

Balaji Ramamurthy, Ravindra Bhalchandra Bapat, Shivani Goel (2020)

Applications of Mathematics

Let T be a tree with n vertices. To each edge of T we assign a weight which is a positive definite matrix of some fixed order, say, s . Let D i j denote the sum of all the weights lying in the path connecting the vertices i and j of T . We now say that D i j is the distance between i and j . Define D : = [ D i j ] , where D i i is the s × s null matrix and for i j , D i j is the distance between i and j . Let G be an arbitrary connected weighted graph with n vertices, where each weight is a positive definite matrix of order s . If i and...

Currently displaying 1 – 20 of 25

Page 1 Next