A concrete analysis of the radical concept.
We construct arbitrarily complicated indecomposable finite-dimensional modules with periodic syzygies over symmetric algebras.
In continuation of our recent work about smash product Hom-Hopf algebras [Colloq. Math. 134 (2014)], we introduce the Hom-Yetter-Drinfeld category via the Radford biproduct Hom-Hopf algebra, and prove that Hom-Yetter-Drinfeld modules can provide solutions of the Hom-Yang-Baxter equation and is a pre-braided tensor category, where (H,β,S) is a Hom-Hopf algebra. Furthermore, we show that is a Radford biproduct Hom-Hopf algebra if and only if (A,α) is a Hom-Hopf algebra in the category . Finally,...
We show that an arbitrary irreducible representation T of a real or complex algebra on the F-space (s), or, more generally, on an arbitrary infinite (topological) product of the field of scalars, is totally irreducible, provided its commutant is trivial. This provides an affirmative solution to a problem of Fell and Doran for representations on these spaces.
Suppose is a field of characteristic and is a -primary abelian -group. It is shown that is a direct factor of the group of units of the group algebra .
Over an artinian hereditary ring R, we discuss how the existence of almost split sequences starting at the indecomposable non-injective preprojective right R-modules is related to the existence of almost split sequences ending at the indecomposable non-projective preinjective left R-modules. This answers a question raised by Simson in [27] in connection with pure semisimple rings.
We investigate the category of finite length modules over the ring , where is a V-ring, i.e. a ring for which every simple module is injective, a subfield of its centre and an elementary -algebra. Each simple module gives rise to a quasiprogenerator . By a result of K. Fuller, induces a category equivalence from which we deduce that . As a consequence we can (1) construct for each elementary -algebra over a finite field a nonartinian noetherian ring such that , (2) find twisted...
The formula is , with ∂a + 1/2 [a,a] = 0 and ∂b + 1/2 [b,b] = 0, where a, b and e in degrees -1, -1 and 0 are the free generators of a completed free graded Lie algebra L[a,b,e]. The coefficients are defined by . The theorem is that ∙ this formula for ∂ on generators extends to a derivation of square zero on L[a,b,e]; ∙ the formula for ∂e is unique satisfying the first property, once given the formulae for ∂a and ∂b, along with the condition that the “flow” generated by e moves a to b in unit...
We show that the validity of Parikh’s theorem for context-free languages depends only on a few equational properties of least pre-fixed points. Moreover, we exhibit an infinite basis of -term equations of continuous commutative idempotent semirings.
We show that the validity of Parikh's theorem for context-free languages depends only on a few equational properties of least pre-fixed points. Moreover, we exhibit an infinite basis of μ-term equations of continuous commutative idempotent semirings.