-ideals and -ideals in non-commutative semirings
We prove that the multiplicity of a simple module as a composition factor in a composition series for a primitive band module over a domestic string algebra is at most two.
We construct bar-invariant -bases of the quantum cluster algebra of the valued quiver , one of which coincides with the quantum analogue of the basis of the corresponding cluster algebra discussed in P. Sherman, A. Zelevinsky: Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Moscow Math. J., 4, 2004, 947–974.
In the present paper, we will show that the set of minimal elements of a full affine semigroup contains a free basis of the group generated by in . This will be applied to the study of the group for a semilocal ring .
Suppose is a commutative ring with identity of prime characteristic and is an arbitrary abelian -group. In the present paper, a basic subgroup and a lower basic subgroup of the -component and of the factor-group of the unit group in the modular group algebra are established, in the case when is weakly perfect. Moreover, a lower basic subgroup and a basic subgroup of the normed -component and of the quotient group are given when is perfect and is arbitrary whose is -divisible....
Let be a normed Sylow -subgroup in a group ring of an abelian group with -component and a -basic subgroup over a commutative unitary ring with prime characteristic . The first central result is that is basic in and is -basic in , and is basic in and is -basic in , provided in both cases is -divisible and is such that its maximal perfect subring has no nilpotents whenever is natural. The second major result is that is -basic in and is -basic in ,...
Suppose is a perfect field of and is an arbitrary abelian multiplicative group with a -basic subgroup and -component . Let be the group algebra with normed group of all units and its Sylow -subgroup , and let be the nilradical of the relative augmentation ideal of with respect to . The main results that motivate this article are that is basic in , and is -basic in provided is -mixed. These achievements extend in some way a result of N. Nachev (1996) in Houston...
Let be any compact simply-connected oriented -dimensional smooth manifold and let be any field. We show that the Gerstenhaber algebra structure on the Hochschild cohomology on the singular cochains of , , extends to a Batalin-Vilkovisky algebra. Such Batalin-Vilkovisky algebra was conjectured to exist and is expected to be isomorphic to the Batalin-Vilkovisky algebra on the free loop space homology on , introduced by Chas and Sullivan. We also show that the negative cyclic cohomology ...
We first prove that every countably presented module is a pure epimorphic image of a countably generated pure-projective module, and by using this we prove that if every countably generated pure-projective module is pure-injective then every module is pure-injective, while if in any countably generated pure-projective module every countably generated pure-projective pure submodule is a direct summand then every module is pure-projective.
In a braided monoidal category C we consider Hopf bimodules and crossed modules over a braided Hopf algebra H. We show that both categories are equivalent. It is discussed that the category of Hopf bimodule bialgebras coincides up to isomorphism with the category of bialgebra projections over H. Using these results we generalize the Radford-Majid criterion and show that bialgebra cross products over the Hopf algebra H are precisely described by H-crossed module bialgebras. In specific braided monoidal...
Let be a group generated by a set of finite order elements. We prove that any bicrossed product between the generalized Taft algebra and group algebra is actually the smash product . Then we show that the classification of these smash products could be reduced to the description of the group automorphisms of . As an application, the classification of is completely presented by generators and relations, where denotes the -cyclic group.