Displaying 1621 – 1640 of 3966

Showing per page

Nil-clean and unit-regular elements in certain subrings of 𝕄 2 ( )

Yansheng Wu, Gaohua Tang, Guixin Deng, Yiqiang Zhou (2019)

Czechoslovak Mathematical Journal

An element in a ring is clean (or, unit-regular) if it is the sum (or, the product) of an idempotent and a unit, and is nil-clean if it is the sum of an idempotent and a nilpotent. Firstly, we show that Jacobson’s lemma does not hold for nil-clean elements in a ring, answering a question posed by Koşan, Wang and Zhou (2016). Secondly, we present new counter-examples to Diesl’s question whether a nil-clean element is clean in a ring. Lastly, we give new examples of unit-regular elements that are...

Nil-extensions of completely simple semirings

Sunil K. Maity, Rituparna Ghosh (2013)

Discussiones Mathematicae - General Algebra and Applications

A semiring S is said to be a quasi completely regular semiring if for any a ∈ S there exists a positive integer n such that na is completely regular. The present paper is devoted to the study of completely Archimedean semirings. We show that a semiring S is a completely Archimedean semiring if and only if it is a nil-extension of a completely simple semiring. This result extends the crucial structure theorem of completely Archimedean semigroup.

Noncommutative algebraic geometry.

Olav A. Laudal (2003)

Revista Matemática Iberoamericana

The need for a noncommutative algebraic geometry is apparent in classical invariant and moduli theory. It is, in general, impossible to find commuting parameters parametrizing all orbits of a Lie group acting on a scheme. When one orbit is contained in the closure of another, the orbit space cannot, in a natural way, be given a scheme structure. In this paper we shall show that one may overcome these difficulties by introducing a noncommutative algebraic geometry, where affine schemes are modeled...

Noncommutative Hodge-to-de Rham spectral sequence and the Heegaard Floer homology of double covers

Robert Lipshitz, David Treumann (2016)

Journal of the European Mathematical Society

Let A be a dg algebra over 𝔽 2 and let M be a dg A -bimodule. We show that under certain technical hypotheses on A , a noncommutative analog of the Hodge-to-de Rham spectral sequence starts at the Hochschild homology of the derived tensor product M A L M and converges to the Hochschild homology of M . We apply this result to bordered Heegaard Floer theory, giving spectral sequences associated to Heegaard Floer homology groups of certain branched and unbranched double covers.

Currently displaying 1621 – 1640 of 3966