Derivations of Skew Polynomial Rings
In this paper, we introduce related comparability for exchange ideals. Let be an exchange ideal of a ring . If satisfies related comparability, then for any regular matrix , there exist left invertible and right invertible such that for idempotents .
A semiring S in 𝕊𝕃⁺ is a t-k-Archimedean semiring if for all a,b ∈ S, b ∈ √(Sa) ∩ √(aS). Here we introduce the t-k-Archimedean semirings and characterize the semirings which are distributive lattice (chain) of t-k-Archimedean semirings. A semiring S is a distributive lattice of t-k-Archimedean semirings if and only if √B is a k-ideal, and S is a chain of t-k-Archimedean semirings if and only if √B is a completely prime k-ideal, for every k-bi-ideal B of S.
2000 Mathematics Subject Classification: 16N80, 16S70, 16D25, 13G05.We construct some new examples showing that Heyman and Roos construction of the essential closure in the class of associative rings can terminate at any finite or the first infinite ordinal.
We characterize C*-algebras and C*-modules such that every maximal right ideal (resp. right submodule) is algebraically finitely generated. In particular, C*-algebras satisfy the Dales-Żelazko conjecture.
Lattices of submodules of modules and the operators we can define on these lattices are useful tools in the study of rings and modules and their properties. Here we shall consider some submodule operators defined by sets of left ideals. First we focus our attention on the relationship between properties of a set of ideals and properties of a submodule operator it defines. Our second goal will be to apply these results to the study of the structure of certain classes of rings and modules. In particular...