On Regular Rings and V-Rings.
The following results are proved for a ring : (1) If is a fully right idempotent ring having a classical left quotient ring which is right quasi-duo, then is a strongly regular ring; (2) has a classical left quotient ring which is a finite direct sum of division rings iff is a left -ring having a reduced maximal right ideal and satisfying the maximum condition on left annihilators; (3) Let have the following properties: (a) each maximal left ideal of is either a two-sided ideal...
We provide a characterization of all finite-dimensional selfinjective algebras over a field K which are socle equivalent to a prominent class of selfinjective algebras of tilted type.
We give a complete description of all finite-dimensional selfinjective algebras over an algebraically closed field whose component quiver has no short cycles.
We describe the structure of all selfinjective artin algebras having at least three nonperiodic generalized standard Auslander-Reiten components. In particular, all selfinjective artin algebras having a generalized standard Auslander-Reiten component of Euclidean type are described.
Assume that k is a field of characteristic different from 2. We show that if Γ is a strongly simply connected k-algebra of non-polynomial growth, then there exists a special family of pointed Γ-modules, called an independent pair of dense chains of pointed modules. Then it follows by a result of Ziegler that Γ admits a super-decomposable pure-injective module if k is a countable field.
The aim of this note is to give an affirmative answer to a problem raised in [9] by J. Nehring and A. Skowroński, concerning the number of nonstable ℙ₁(K)-families of quasi-tubes in the Auslander-Reiten quivers of the trivial extensions of tubular algebras over algebraically closed fields K.
In this paper, we define Gorenstein injective rings, Gorenstein injective modules and their envelopes. The main topic of this paper is to show that if is a Gorenstein integral domain and is a left -module, then the torsion submodule of Gorenstein injective envelope of is also Gorenstein injective. We can also show that if is a torsion -module of a Gorenstein injective integral domain , then the Gorenstein injective envelope of is torsion.
In the class of all exact torsion theories the torsionfree classes are cover (precover) classes if and only if the classes of torsionfree relatively injective modules or relatively exact modules are cover (precover) classes, and this happens exactly if and only if the torsion theory is of finite type. Using the transfinite induction in the second half of the paper a new construction of a torsionfree relatively injective cover of an arbitrary module with respect to Goldie’s torsion theory of finite...