Page 1

Displaying 1 – 5 of 5

Showing per page

Characterizations of incidence modules

Naseer Ullah, Hailou Yao, Qianqian Yuan, Muhammad Azam (2024)

Czechoslovak Mathematical Journal

Let R be an associative ring and M be a left R -module. We introduce the concept of the incidence module I ( X , M ) of a locally finite partially ordered set X over M . We study the properties of I ( X , M ) and give the necessary and sufficient conditions for the incidence module to be an IN-module, -module, nil injective module and nonsingular module, respectively. Furthermore, we show that the class of -modules is closed under direct product and upper triangular matrix modules.

Closed extensions of R-modules in the case of a semi-artinian ring R

Frans Loonstra (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considerano le estensioni chiuse B di un R -modulo A mediante un R -modulo C nel caso in cui R sia un anello semi-artiniano, cioè un anello R con la proprietà che per ogni quoziente ( R / I ) 0 sia soc ( R / I ) 0 . Tali estensioni sono caratterizzate dal fatto che A deve essere un sottomodulo semi-puro di B .

Commutative rings whose certain modules decompose into direct sums of cyclic submodules

Farid Kourki, Rachid Tribak (2023)

Czechoslovak Mathematical Journal

We provide some characterizations of rings R for which every (finitely generated) module belonging to a class 𝒞 of R -modules is a direct sum of cyclic submodules. We focus on the cases, where the class 𝒞 is one of the following classes of modules: semiartinian modules, semi-V-modules, V-modules, coperfect modules and locally supplemented modules.

Currently displaying 1 – 5 of 5

Page 1