-pure submodules.
Let M be a left module over a ring R. M is called a Zelmanowitz-regular module if for each x ∈ M there exists a homomorphism F: M → R such that f(x) = x. Let Q be a left R-module and h: Q → M a homomorphism. We call h locally split if for every x ∈ M there exists a homomorphism g: M → Q such that h(g(x)) = x. M is called locally projective if every epimorphism onto M is locally split. We prove that the following conditions are equivalent:(1) M is Zelmanowitz-regular.(2) every homomorphism into M...
Let be a ring and let be an -module with . Consider the preradical for the category of right -modules Mod- introduced by Y. Talebi and N. Vanaja in 2002 and defined by is small in its injective hull. The module is called quasi-t-dual Baer if is a direct summand of for every two-sided ideal of , where . In this paper, we show that is quasi-t-dual Baer if and only if is a direct summand of and is a quasi-dual Baer module. It is also shown that any direct summand of a...
In this paper, we prove that any pure submodule of a strict Mittag-Leffler module is a locally split submodule. As applications, we discuss some relations between locally split monomorphisms and locally split epimorphisms and give a partial answer to the open problem whether Gorenstein projective modules are Ding projective.
In this paper we introduce the class of strongly rectifiable and S-homogeneous modules. We study basic properties of these modules, of their pure and refined submodules, of Hill's modules and we also prove an extension of the second Prüfer's theorem.