On relative homotopy groups of modules.
The aim of this paper is to investigate quasi-corational, comonoform, copolyform and -(co)atomic modules. It is proved that for an ordinal a right -module is -atomic if and only if it is -coatomic. And it is also shown that an -atomic module is quasi-projective if and only if is quasi-corationally complete. Some other results are developed.
Let A be a finite-dimensional algebra over an algebraically closed field with radical square zero, and such that all simple A-modules have dimension at most two. We give a characterization of those A that have finitely many conjugacy classes of left ideals.
Let be a module and be a class of modules in which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a -essential submodule provided it has a non-zero intersection with any non-zero submodule in . We define and investigate -singular modules. We also introduce -extending and weakly -extending modules and mainly study weakly -extending modules. We give some characterizations of -co-H-rings by weakly -extending modules. Let ...
In this paper we introduce the concept of -extending modules by -rational submodules and study some properties of such modules. It is shown that the set of all -rational left ideals of is a Gabriel filter. An -module is called -extending if every submodule of is -rational in a direct summand of . It is proved that is -extending if and only if , such that is a -extending submodule of . An example is given to show that the direct sum of -extending modules need not be -extending....