Hopf cohomology vanishing via approximation by Hochschild cohomology
Let be a dg algebra over and let be a dg -bimodule. We show that under certain technical hypotheses on , a noncommutative analog of the Hodge-to-de Rham spectral sequence starts at the Hochschild homology of the derived tensor product and converges to the Hochschild homology of . We apply this result to bordered Heegaard Floer theory, giving spectral sequences associated to Heegaard Floer homology groups of certain branched and unbranched double covers.
Suppose that A and B are unital Banach algebras with units and , respectively, M is a unital Banach A,B-module, is the triangular Banach algebra, X is a unital -bimodule, , , and . Applying two nice long exact sequences related to A, B, , X, , , and we establish some results on (co)homology of triangular Banach algebras.
In this note we show that there are a lot of orbit algebras that are invariant under stable equivalences of Morita type between self-injective algebras. There are also indicated some links between Auslander-Reiten periodicity of bimodules and noetherianity of their orbit algebras.