Displaying 201 – 220 of 223

Showing per page

The Hochschild cohomology ring modulo nilpotence of a stacked monomial algebra

Edward L. Green, Nicole Snashall (2006)

Colloquium Mathematicae

This paper studies the Hochschild cohomology of finite-dimensional monomial algebras. If Λ = K/I with I an admissible monomial ideal, then we give sufficient conditions for the existence of an embedding of K [ x , . . . , x r ] / x a x b f o r a b into the Hochschild cohomology ring HH*(Λ). We also introduce stacked algebras, a new class of monomial algebras which includes Koszul and D-Koszul monomial algebras. If Λ is a stacked algebra, we prove that H H * ( Λ ) / K [ x , . . . , x r ] / x a x b f o r a b , where is the ideal in HH*(Λ) generated by the homogeneous nilpotent elements. In...

The multiplicity problem for indecomposable decompositions of modules over domestic canonical algebras

Piotr Dowbor, Andrzej Mróz (2008)

Colloquium Mathematicae

Given a module M over a domestic canonical algebra Λ and a classifying set X for the indecomposable Λ-modules, the problem of determining the vector m ( M ) = ( m x ) x X X such that M x X X x m x is studied. A precise formula for d i m k H o m Λ ( M , X ) , for any postprojective indecomposable module X, is computed in Theorem 2.3, and interrelations between various structures on the set of all postprojective roots are described in Theorem 2.4. It is proved in Theorem 2.2 that a general method of finding vectors m(M) presented by the authors in Colloq....

The multiplicity problem for indecomposable decompositions of modules over a finite-dimensional algebra. Algorithms and a computer algebra approach

Piotr Dowbor, Andrzej Mróz (2007)

Colloquium Mathematicae

Given a module M over an algebra Λ and a complete set of pairwise nonisomorphic indecomposable Λ-modules, the problem of determining the vector m ( M ) = ( m X ) X such that M X X m X is studied. A general method of finding the vectors m(M) is presented (Corollary 2.1, Theorem 2.2 and Corollary 2.3). It is discussed and applied in practice for two classes of algebras: string algebras of finite representation type and hereditary algebras of type ̃ p , q . In the second case detailed algorithms are given (Algorithms 4.5 and 5.5).

The number of complete exceptional sequences for a Dynkin algebra

Mustafa Obaid, Khalid Nauman, Wafa S. M. Al-Shammakh, Wafaa Fakieh, Claus Michael Ringel (2013)

Colloquium Mathematicae

The Dynkin algebras are the hereditary artin algebras of finite representation type. The paper determines the number of complete exceptional sequences for any Dynkin algebra. Since the complete exceptional sequences for a Dynkin algebra of Dynkin type Δ correspond bijectively to the maximal chains in the lattice of non-crossing partitions of type Δ, the calculations presented here may also be considered as a categorification of the corresponding result for non-crossing partitions.

The quasi-hereditary algebra associated to the radical bimodule over a hereditary algebra

Lutz Hille, Dieter Vossieck (2003)

Colloquium Mathematicae

Let Γ be a finite-dimensional hereditary basic algebra. We consider the radical rad Γ as a Γ-bimodule. It is known that there exists a quasi-hereditary algebra 𝓐 such that the category of matrices over rad Γ is equivalent to the category of Δ-filtered 𝓐-modules ℱ(𝓐,Δ). In this note we determine the quasi-hereditary algebra 𝓐 and prove certain properties of its module category.

Tilting Bundles on Rational Surfaces and Quasi-Hereditary Algebras

Lutz Hille, Markus Perling (2014)

Annales de l’institut Fourier

Let X be any rational surface. We construct a tilting bundle T on X . Moreover, we can choose T in such way that its endomorphism algebra is quasi-hereditary. In particular, the bounded derived category of coherent sheaves on X is equivalent to the bounded derived category of finitely generated modules over a finite dimensional quasi-hereditary algebra A . The construction starts with a full exceptional sequence of line bundles on X and uses universal extensions. If X is any smooth projective variety...

Tilting slice modules over minimal 2-fundamental algebras

Zygmunt Pogorzały, Karolina Szmyt (2008)

Colloquium Mathematicae

A class of finite-dimensional algebras whose Auslander-Reiten quivers have starting but not generalized standard components is investigated. For these components the slices whose slice modules are tilting are considered. Moreover, the endomorphism algebras of tilting slice modules are characterized.

Top-stable and layer-stable degenerations and hom-order

S. O. Smalø, A. Valenta (2007)

Colloquium Mathematicae

Using geometrical methods, Huisgen-Zimmermann showed that if M is a module with simple top, then M has no proper degeneration M < d e g N such that t M / t + 1 M t N / t + 1 N for all t. Given a module M with square-free top and a projective cover P, she showed that d i m k H o m ( M , M ) = d i m k H o m ( P , M ) if and only if M has no proper degeneration M < d e g N where M/M ≃ N/N. We prove here these results in a more general form, for hom-order instead of degeneration-order, and we prove them algebraically. The results of Huisgen-Zimmermann follow as consequences from our results....

Two classes of almost Galois coverings for algebras

Piotr Dowbor, Adam Hajduk (2012)

Colloquium Mathematicae

We prove that for any representation-finite algebra A (in fact, finite locally bounded k-category), the universal covering F: Ã → A is either a Galois covering or an almost Galois covering of integral type, and F admits a degeneration to the standard Galois covering F̅: Ã→ Ã/G, where G = Π ( Γ A ) is the fundamental group of Γ A . It is shown that the class of almost Galois coverings F: R → R’ of integral type, containing the series of examples from our earlier paper [Bol. Soc. Mat. Mexicana 17 (2011)], behaves...

Varieties of modules over tubular algebras

Christof Geiss, Jan Schröer (2003)

Colloquium Mathematicae

We classify the irreducible components of varieties of modules over tubular algebras. Our results are stated in terms of root combinatorics. They can be applied to understand the varieties of modules over the preprojective algebras of Dynkin type 𝔸₅ and 𝔻₄.

Currently displaying 201 – 220 of 223