The Yoneda algebras of serial QF-algebras.
Let be any rational surface. We construct a tilting bundle on . Moreover, we can choose in such way that its endomorphism algebra is quasi-hereditary. In particular, the bounded derived category of coherent sheaves on is equivalent to the bounded derived category of finitely generated modules over a finite dimensional quasi-hereditary algebra . The construction starts with a full exceptional sequence of line bundles on and uses universal extensions. If is any smooth projective variety...
A class of finite-dimensional algebras whose Auslander-Reiten quivers have starting but not generalized standard components is investigated. For these components the slices whose slice modules are tilting are considered. Moreover, the endomorphism algebras of tilting slice modules are characterized.
Using geometrical methods, Huisgen-Zimmermann showed that if M is a module with simple top, then M has no proper degeneration such that for all t. Given a module M with square-free top and a projective cover P, she showed that if and only if M has no proper degeneration where M/M ≃ N/N. We prove here these results in a more general form, for hom-order instead of degeneration-order, and we prove them algebraically. The results of Huisgen-Zimmermann follow as consequences from our results....
We prove that for any representation-finite algebra A (in fact, finite locally bounded k-category), the universal covering F: Ã → A is either a Galois covering or an almost Galois covering of integral type, and F admits a degeneration to the standard Galois covering F̅: Ã→ Ã/G, where is the fundamental group of . It is shown that the class of almost Galois coverings F: R → R’ of integral type, containing the series of examples from our earlier paper [Bol. Soc. Mat. Mexicana 17 (2011)], behaves...