Displaying 381 – 400 of 630

Showing per page

On wings of the Auslander-Reiten quivers of selfinjective algebras

Marta Kwiecień, Andrzej Skowroński (2005)

Colloquium Mathematicae

We give necessary and sufficient conditions for a wing of an Auslander-Reiten quiver of a selfinjective algebra to be the wing of the radical of an indecomposable projective module. Moreover, a characterization of indecomposable Nakayama algebras of Loewy length ≥ 3 is obtained.

Orbit algebras and periodicity

Petter Andreas Bergh (2009)

Colloquium Mathematicae

Given an object in a category, we study its orbit algebra with respect to an endofunctor. We show that if the object is periodic, then its orbit algebra modulo nilpotence is a polynomial ring in one variable. This specializes to a result on Ext-algebras of periodic modules over Gorenstein algebras. We also obtain a criterion for an algebra to be of wild representation type.

Orbit algebras that are invariant under stable equivalences of Morita type

Zygmunt Pogorzały (2014)

Open Mathematics

In this note we show that there are a lot of orbit algebras that are invariant under stable equivalences of Morita type between self-injective algebras. There are also indicated some links between Auslander-Reiten periodicity of bimodules and noetherianity of their orbit algebras.

Partial flag varieties and preprojective algebras

Christof Geiß, Bernard Leclerc, Jan Schröer (2008)

Annales de l’institut Fourier

Let Λ be a preprojective algebra of type A , D , E , and let G be the corresponding semisimple simply connected complex algebraic group. We study rigid modules in subcategories Sub Q for Q an injective Λ -module, and we introduce a mutation operation between complete rigid modules in Sub Q . This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to  G .

Path coalgebras of profinite bound quivers, cotensor coalgebras of bound species and locally nilpotent representations

Daniel Simson (2007)

Colloquium Mathematicae

We prove that the study of the category C-Comod of left comodules over a K-coalgebra C reduces to the study of K-linear representations of a quiver with relations if K is an algebraically closed field, and to the study of K-linear representations of a K-species with relations if K is a perfect field. Given a field K and a quiver Q = (Q₀,Q₁), we show that any subcoalgebra C of the path K-coalgebra K◻Q containing K Q K Q is the path coalgebra K ( Q , ) of a profinite bound quiver (Q,), and the category C-Comod...

Piecewise hereditary algebras under field extensions

Jie Li (2021)

Czechoslovak Mathematical Journal

Let A be a finite-dimensional k -algebra and K / k be a finite separable field extension. We prove that A is derived equivalent to a hereditary algebra if and only if so is A k K .

Currently displaying 381 – 400 of 630