Tilting theory - an introduction
Using geometrical methods, Huisgen-Zimmermann showed that if M is a module with simple top, then M has no proper degeneration such that for all t. Given a module M with square-free top and a projective cover P, she showed that if and only if M has no proper degeneration where M/M ≃ N/N. We prove here these results in a more general form, for hom-order instead of degeneration-order, and we prove them algebraically. The results of Huisgen-Zimmermann follow as consequences from our results....
Let A be a finite-dimensional algebra over a field k. We discuss the existence of trisections (mod₊ A,mod₀ A,mod₋ A) of the category of finitely generated modules mod A satisfying exactness, standardness, separation and adjustment conditions. Many important classes of algebras admit trisections. We describe a construction of algebras admitting a trisection of their module categories and, in special cases, we describe the structure of the components of the Auslander-Reiten quiver lying in mod₀ A.
Let S be a commutative local ring of characteristic p, which is not a field, S* the multiplicative group of S, W a subgroup of S*, G a finite p-group, and a twisted group ring of the group G and of the ring S with a 2-cocycle λ ∈ Z²(G,S*). Denote by the set of isomorphism classes of indecomposable -modules of S-rank m. We exhibit rings for which there exists a function such that and is an infinite set for every natural n > 1. In special cases contains every natural number m >...
We prove that for any representation-finite algebra A (in fact, finite locally bounded k-category), the universal covering F: Ã → A is either a Galois covering or an almost Galois covering of integral type, and F admits a degeneration to the standard Galois covering F̅: Ã→ Ã/G, where is the fundamental group of . It is shown that the class of almost Galois coverings F: R → R’ of integral type, containing the series of examples from our earlier paper [Bol. Soc. Mat. Mexicana 17 (2011)], behaves...