A non-commutative minimally non-Noetherian ring.
A ring A is called a chain ring if it is a local, both sided artinian, principal ideal ring. Let R be a commutative chain ring. Let A be a faithful R-algebra which is a chain ring such that Ā = A/J(A) is a separable field extension of R̅ = R/J(R). It follows from a recent result by Alkhamees and Singh that A has a commutative R-subalgebra R₀ which is a chain ring such that A = R₀ + J(A) and R₀ ∩ J(A) = J(R₀) = J(R)R₀. The structure of A in terms of a skew polynomial ring over R₀ is determined.
Let H be a Hopf algebra over a field k such that every finite-dimensional (left) H-module is semisimple. We give a counterpart of the first fundamental theorem of the classical invariant theory for locally finite, finitely generated (commutative) H-module algebras, and for local, complete H-module algebras. Also, we prove that if H acts on the k-algebra A = k[[X₁,...,Xₙ]] in such a way that the unique maximal ideal in A is invariant, then the algebra of invariants is a noetherian Cohen-Macaulay...
We give a comment to Theorem 1.1 published in our paper “Ring elements as sums of units” [Cent. Eur. J. Math., 2009, 7(3), 395–399].
Addendum to the author's article "Rings whose modules have maximal submodules", which appeared in Publicacions Matemàtiques 39, 1 (1995), 201-214.
We list some typos and minor correction that in no way affect the main results of Rings with zero intersection property on annihilators: Zip rings (Publicacions Matemàtiques 33, 2 (1989), pp. 329-338), e.g., nothing stated in the abstract is affected.