Page 1 Next

Displaying 1 – 20 of 27

Showing per page

G -nilpotent units of commutative group rings

Peter Vassilev Danchev (2012)

Commentationes Mathematicae Universitatis Carolinae

Suppose R is a commutative unital ring and G is an abelian group. We give a general criterion only in terms of R and G when all normalized units in the commutative group ring R G are G -nilpotent. This extends recent results published in [Extracta Math., 2008–2009] and [Ann. Sci. Math. Québec, 2009].

Grothendieck ring of quantum double of finite groups

Jingcheng Dong (2010)

Czechoslovak Mathematical Journal

Let k G be a group algebra, and D ( k G ) its quantum double. We first prove that the structure of the Grothendieck ring of D ( k G ) can be induced from the Grothendieck ring of centralizers of representatives of conjugate classes of G . As a special case, we then give an application to the group algebra k D n , where k is a field of characteristic 2 and D n is a dihedral group of order 2 n .

Group algebras with centrally metabelian unit groups.

Meena Sahai (1996)

Publicacions Matemàtiques

Given a field K of characteristic p > 2 and a finite group G, necessary and sufficient conditions for the unit group U(KG) of the group algebra KG to be centrally metabelian are obtained. It is observed that U(KG) is centrally metabelian if and only if KG is Lie centrally metabelian.

Currently displaying 1 – 20 of 27

Page 1 Next