On classical quotient rings of skew Armendariz rings.
Let be a ring and an endomorphism of . We give a generalization of McCoy’s Theorem [ Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28–29] to the setting of skew polynomial rings of the form . As a consequence, we will show some results on semicommutative and -skew McCoy rings. Also, several relations among McCoyness, Nagata extensions and Armendariz rings and modules are studied.
Siano un ideale di un anello e una congruenza su un semigruppo . Consideriamo l'anello semigruppo come un'immagine omomorfa dell'anello semigruppo . Questo è fatto in tre passi: prima studiando l'anello semigruppo , poi e infine combinando i due casi speciali. In ciascun caso, determiniamo l'ideale che è il nucleo dell'omomorfismo in questione. I risultati corrispondenti per le -algebre, dove è un anello commutativo, possono essere facilmente dedotti. Alcuni raffinamenti, casi speciali...
Let be a ring. A right -module is said to be retractable if whenever is a non-zero submodule of . The goal of this article is to investigate a ring for which every right R-module is retractable. Such a ring will be called right mod-retractable. We proved that The ring is right mod-retractable if and only if each is a right mod-retractable ring for each , where is an arbitrary finite set. If is a mod-retractable ring then is a mod-retractable ring.
In this note, for a ring endomorphism and an -derivation of a ring , the notion of weakened -skew Armendariz rings is introduced as a generalization of -rigid rings and weak Armendariz rings. It is proved that is a weakened -skew Armendariz ring if and only if is weakened -skew Armendariz if and only if is weakened -skew Armendariz ring for any positive integer .