On a Class with Rings with Inverse Weak Algorithm.
The main result of this paper is the introduction of a notion of a generalized -Latin square, which includes as a special case the standard Latin square, as well as the magic square, and also the double stochastic matrix. Further, the algebra of all generalized Latin squares over a commutative ring with identity is investigated. Moreover, some remarkable examples are added.
An -closed submodule of a module is a submodule for which is nonsingular. A module is called a generalized CS-module (or briefly, GCS-module) if any -closed submodule of is a direct summand of . Any homomorphic image of a GCS-module is also a GCS-module. Any direct sum of a singular (uniform) module and a semi-simple module is a GCS-module. All nonsingular right -modules are projective if and only if all right -modules are GCS-modules.
A class of semirings, so called p-semirings, characterized by a natural number p is introduced and basic properties are investigated. It is proved that every p-semiring is a union of skew rings. It is proved that for some p-semirings with non-commutative operations, this union contains rings which are commutative and possess an identity.
In this note, for a ring endomorphism and an -derivation of a ring , the notion of weakened -skew Armendariz rings is introduced as a generalization of -rigid rings and weak Armendariz rings. It is proved that is a weakened -skew Armendariz ring if and only if is weakened -skew Armendariz if and only if is weakened -skew Armendariz ring for any positive integer .