Displaying 221 – 240 of 1097

Showing per page

Endomorphism rings of maximal rigid objects in cluster tubes

Dagfinn F. Vatne (2011)

Colloquium Mathematicae

We describe the endomorphism rings of maximal rigid objects in the cluster categories of tubes. Moreover, we show that they are gentle and have Gorenstein dimension 1. We analyse their representation theory and prove that they are of finite type. Finally, we study the relationship between the module category and the cluster tube via the Hom-functor.

Equivariant one-parameter deformations of associative algebra morphisms

Raj Bhawan Yadav (2023)

Czechoslovak Mathematical Journal

We introduce equivariant formal deformation theory of associative algebra morphisms. We also present an equivariant deformation cohomology of associative algebra morphisms and using this we study the equivariant formal deformation theory of associative algebra morphisms. We discuss some examples of equivariant deformations and use the Maurer-Cartan equation to characterize equivariant deformations.

Essential Cover and Closure

Andruszkiewicz, R. (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 16N80, 16S70, 16D25, 13G05.We construct some new examples showing that Heyman and Roos construction of the essential closure in the class of associative rings can terminate at any finite or the first infinite ordinal.

Exact sequences for mixed coproduct/ tensor-product ring constructions.

Warren Dicks, Ian J. Leary (1994)

Publicacions Matemàtiques

To a commutative ring K, and a family of K-algebras indexed by the vertex set of a graph, we associate a K-algebra obtained by a mixture of coproduct and tensor product constructions. For this, and related constructions, we give exact sequences and deduce homological properties.

Currently displaying 221 – 240 of 1097