The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Quasitriangular Hom-Hopf algebras

Yuanyuan Chen, Zhongwei Wang, Liangyun Zhang (2014)

Colloquium Mathematicae

A twisted generalization of quasitriangular Hopf algebras called quasitriangular Hom-Hopf algebras is introduced. We characterize these algebras in terms of certain morphisms. We also give their equivalent description via a braided monoidal category ̃ ( H ) . Finally, we study the twisting structure of quasitriangular Hom-Hopf algebras by conjugation with Hom-2-cocycles.

Quasitriangular Hopf group algebras and braided monoidal categories

Shiyin Zhao, Jing Wang, Hui-Xiang Chen (2014)

Czechoslovak Mathematical Journal

Let π be a group, and H be a semi-Hopf π -algebra. We first show that the category H of left π -modules over H is a monoidal category with a suitably defined tensor product and each element α in π induces a strict monoidal functor F α from H to itself. Then we introduce the concept of quasitriangular semi-Hopf π -algebra, and show that a semi-Hopf π -algebra H is quasitriangular if and only if the category H is a braided monoidal category and F α is a strict braided monoidal functor for any α π . Finally,...

Currently displaying 1 – 2 of 2

Page 1