More on the Schur group of a commutative ring.
The Hopf algebra of word-quasi-symmetric functions (), a noncommutative generalization of the Hopf algebra of quasi-symmetric functions, can be endowed with an internal product that has several compatibility properties with the other operations on . This extends constructions familiar and central in the theory of free Lie algebras, noncommutative symmetric functions and their various applications fields, and allows to interpret as a convolution algebra of linear endomorphisms of quasi-shuffle...
We give conditions for the skew group ring S * G to be strongly separable and H-separable over the ring S. In particular we show that the H-separability is equivalent to S being central Galois extension. We also look into the H-separability of the ring S over the fixed subring R under a faithful action of a group G. We show that such a chain: S * G H-separable over S and S H-separable over R cannot occur, and that the centralizer of R in S is an Azumaya algebra in the presence of a central element...
Let be a semiprime ring and an additive mapping such that holds for all . Then is a left centralizer of . It is also proved that Jordan centralizers and centralizers of coincide.