A note on semiprime rings with derivation.
The paper was motivated by Kovacs’ paper (1973), Isaacs’ paper (1980) and a recent paper, due to Brešar et al. (2018), concerning Skolem-Noether algebras. Let be a unital commutative ring, not necessarily a field. Given a unital -algebra , where is contained in the center of , , the goal of this paper is to study the question: when can a homomorphism be extended to an inner automorphism of ? As an application of main results presented in the paper, it is proved that if is a semilocal...
A trivializability principle for local rings is described which leads to a form of weak algorithm for local semifirs with a finitely generated maximal ideal whose powers meet in zero.
A ring R is called Armendariz (resp., Armendariz of power series type) if, whenever in R[x] (resp., in R[[x]]), then for all i and j. This paper deals with a unified generalization of the two concepts (see Definition 2). Some known results on Armendariz rings are extended to this more general situation and new results are obtained as consequences. For instance, it is proved that a ring R is Armendariz of power series type iff the same is true of R[[x]]. For an injective endomorphism σ of a ring...