Rings all of whose additive endomorphisms are left multiplications.
The aim of this paper is to consider the ringswhich can be graded by completely simple semigroups. We show that each G-graded ring has an orthonormal basis, where G is a completely simple semigroup. We prove that if I is a complete homogeneous ideal of a G-graded ring R, then R/I is a G-graded ring.We deduce a characterization of the maximal ideals of a G-graded ring which are homogeneous. We also prove that if R is a Noetherian graded ring, then each summand of it is also a Noetherian module..
We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter.
We give the description of Rota–Baxter operators, Reynolds operators, Nijenhuis operators and average operators on 3-dimensional nilpotent associative algebras over .