Automorphisms of Representation Finite Algebras.
We recall the notion of Hopf quasigroups introduced previously by the authors. We construct a bicrossproduct Hopf quasigroup from every group with a finite subgroup and IP quasigroup transversal subject to certain conditions. We identify the octonions quasigroup as transversal in an order 128 group with subgroup and hence obtain a Hopf quasigroup as a particular case of our construction.
On définit une structure de bigèbre différentielle graduée sur la somme directe des complexes cellulaires des permutoèdres, qui contient une sous-bigèbre différentielle graduée dont le complexe sous-jacent est la somme directe des complexes cellulaires des polytopes de Stasheff. Ceci étend des constructions de Malvenuto et Reutenauer et de Loday et Ronco pour les sommets des mêmes polytopes.
Let C be a coalgebra over an arbitrary field K. We show that the study of the category C-Comod of left C-comodules reduces to the study of the category of (co)representations of a certain bicomodule, in case C is a bipartite coalgebra or a coradical square complete coalgebra, that is, C = C₁, the second term of the coradical filtration of C. If C = C₁, we associate with C a K-linear functor that restricts to a representation equivalence , where is a coradical square complete hereditary bipartite...
Let and be commutative rings with identity. An --biring is an -algebra together with a lift of the functor from -algebras to sets to a functor from -algebras to -algebras. An -plethory is a monoid object in the monoidal category, equipped with the composition product, of --birings. The polynomial ring is an initial object in the category of such structures. The -algebra has such a structure if is a domain such that the natural -algebra homomorphism is an isomorphism for...
Let G be a group, R a G-graded ring and X a right G-set. We study functors between categories of modules graded by G-sets, continuing the work of [M]. As an application we obtain generalizations of Cohen-Montgomery Duality Theorems by categorical methods. Then we study when some functors introduced in [M] (which generalize some functors ocurring in [D1], [D2] and [NRV]) are separable. Finally we obtain an application to the study of the weak dimension of a group graded ring.
In this paper we improve recent results dealing with cellular covers of R-modules. Cellular covers (sometimes called colocalizations) come up in the context of homotopical localization of topological spaces. They are related to idempotent cotriples, idempotent comonads or coreflectors in category theory. Recall that a homomorphism of R-modules π: G → H is called a cellular cover over H if π induces an isomorphism , where π⁎(φ) = πφ for each (where maps are acting on the left). On the one hand,...
The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let be a noncommutative prime ring of characteristic different from two and let and be left centralizers on . Suppose that is fulfilled for all . If