Loading [MathJax]/extensions/MathZoom.js
We introduce the concept of relative Hom-Hopf modules and investigate their structure in a monoidal category . More particularly, the fundamental theorem for relative Hom-Hopf modules is proved under the assumption that the Hom-comodule algebra is cleft. Moreover, Maschke’s theorem for relative Hom-Hopf modules is established when there is a multiplicative total Hom-integral.
We introduce the class of split regular Hom-Poisson algebras formed by those Hom-Poisson algebras whose underlying Hom-Lie algebras are split and regular. This class is the natural extension of the ones of split Hom-Lie algebras and of split Poisson algebras. We show that the structure theorems for split Poisson algebras can be extended to the more general setting of split regular Hom-Poisson algebras. That is, we prove that an arbitrary split regular Hom-Poisson algebra is of the form with U...
We classify all complex - and -dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex -dimensional dual mock-Lie algebras.
Currently displaying 1 –
6 of
6