On Leibniz algebras with maximal cyclic subalgebras
We begin to study the structure of Leibniz algebras having maximal cyclic subalgebras.
We begin to study the structure of Leibniz algebras having maximal cyclic subalgebras.
This article discusses the Leibniz algebras whose upper hypercenter has finite codimension. It is proved that such an algebra includes a finite dimensional ideal such that the factor-algebra is hypercentral. This result is an extension to the Leibniz algebra of the corresponding result obtained earlier for Lie algebras. It is also analogous to the corresponding results obtained for groups and modules.
On définit plusieurs opérades différentielles graduées, dont certaines en relation avec des familles de polytopes : les simplexes et les permutoèdres. On obtient également une présentation de l’opérade liée aux associaèdres introduite dans un article antérieur.