The search session has expired. Please query the service again.
Attempts to extend our previous work using the octonions to describe fundamental particles lead naturally to the consideration of a particular real, noncompact form of the exceptional Lie group , and of its subgroups. We are therefore led to a description of in terms of octonionic matrices, generalizing previous results in the case. Our treatment naturally includes a description of several important subgroups of , notably , , and (the double cover of) . An interpretation of the actions...
In this paper we prove that a nondegenerate Jordan algebra satisfying the descending chain condition on the principal inner ideals, also satisfies the ascending chain condition on the annihilators of the principal inner ideals. We also study annihilators in Jordan algebras without nilpotent elements and in JB-algebras.
In this paper we will examine the relationship between modularity in the lattices of subalgebras of A and A(+), for A an associative algebra over an algebraically closed field. To this aim we will construct an ideal which measures the modularity of an algebra (not necessarily associative) in paragraph 1, examine modular associative algebras in paragraph 2, and prove in paragraph 3 that the ideal constructed in paragraph 1 coincides for A and A(+). We will also examine some properties of the ideal...
We prove that for a suitable associative (real or complex) algebra which has many nice algebraic properties, such as being simple and having minimal idempotents, a norm can be given such that the mapping (a,b) ↦ ab + ba is jointly continuous while (a,b) ↦ ab is only separately continuous. We also prove that such a pathology cannot arise for associative simple algebras with a unit. Similar results are obtained for the so-called "norm extension problem", and the relationship between these results...
For large classes of complex Banach spaces (mainly operator spaces) we consider orbits of finite rank elements under the group of linear isometries. These are (in general) real-analytic submanifolds of infinite dimension but of finite CR-codimension. We compute the polynomial convex hull of such orbits explicitly and show as main result that every continuous CR-function on has a unique extension to the polynomial convex hull which is holomorphic in a certain sense. This generalizes to infinite...
In this article, a theorem is proved asserting that any linear functional defined on a JBW-algebra admits a Lebesque decomposition with respect to any normal state defined on the algebra. Then we show that the positivity (and the unicity) of this decomposition is insured for the trace states defined on the algebra. In fact, this property can be used to give a new characterization of the trace states amoungst all the normal states.
The Banach-Lie algebras ℌκ of all holomorphic infinitesimal isometries of the classical symmetric complex Banach manifolds of compact type (κ = 1) and non compact type (κ = −1) associated with a complex JB*-triple Z are considered and the Lie ideal structure of ℌκ is studied.
Currently displaying 1 –
20 of
25