Reflective Kleisli subcategories of the category of Eilenberg-Moore algebras for factorization monads.
We outline our recent results on bicovariant differential calculi on co-quasitriangular Hopf algebras, in particular that if is a quantum tangent space (quantum Lie algebra) for a CQT Hopf algebra A, then the space is a braided Lie algebra in the category of A-comodules. An important consequence of this is that the universal enveloping algebra is a bialgebra in the category of A-comodules.
The aim of this article is to study the relative Auslander bijection in -exangulated categories. More precisely, we introduce the notion of generalized Auslander-Reiten-Serre duality and exploit a bijection triangle, which involves the generalized Auslander-Reiten-Serre duality and the restricted Auslander bijection relative to the subfunctor. As an application, this result generalizes the work by Zhao in extriangulated categories.