A decomposition theorem for comodules
A duality between -ary varieties and -ary algebraic theories is proved as a direct generalization of the finitary case studied by the first author, F.W. Lawvere and J. Rosick’y. We also prove that for every uncountable cardinal , whenever -small products commute with -colimits in , then must be a -filtered category. We nevertheless introduce the concept of -sifted colimits so that morphisms between -ary varieties (defined to be -ary, regular right adjoints) are precisely the functors...
The contribution is devoted to the question of the interchange of the construction of a quasiorder hypergroup from a quasiordered set and the factorization.
We show that the action of the mapping class group on bordered Floer homology in the second to extremal spin-structure is faithful. This paper is designed partly as an introduction to the subject, and much of it should be readable without a background in Floer homology.
A functional representation of the hyperspace monad, based on the semilattice structure of function space, is constructed.
There is a classical result known as Baer’s Lemma that states that an -module is injective if it is injective for . This means that if a map from a submodule of , that is, from a left ideal of to can always be extended to , then a map to from a submodule of any -module can be extended to ; in other words, is injective. In this paper, we generalize this result to the category consisting of the representations of an infinite line quiver. This generalization of Baer’s Lemma...