On natural merotopies
We investigate degenerations and derived equivalences of tame selfinjective algebras having no simply connected Galois coverings but the stable Auslander-Reiten quiver consisting only of tubes, discovered recently in [4].
In the theory of accessible categories, pure subobjects, i.e. filtered colimits of split monomorphisms, play an important role. Here we investigate pure quotients, i.e., filtered colimits of split epimorphisms. For example, in abelian, finitely accessible categories, these are precisely the cokernels of pure subobjects, and pure subobjects are precisely the kernels of pure quotients.