Previous Page 2
Displaying 21 – 40 of 40
Les fins cartésiennes généralisées
Syméon Bozapalides (1977)
Archivum Mathematicum
Lifting tensorproducts along non-adjoint functors
Georg Greve, Jenö Szigeti, Walter Tholen (1982)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Limit preserving full embeddings.
Trnková, V, Sichler, J. (2008)
Theory and Applications of Categories [electronic only]
Limites enrichies et existence de -foncteur adjoint
Francis Borceux (1975)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Limites projectives conditionnelles dans les catégories accessibles
P. Ageron (1997)
Diagrammes
Limites projectives et approximation. Limites inductives
E. M. J. Bertin (1975)
Compositio Mathematica
Limits and colimits in certain categories of spaces of continuous functions [Book]
Marvin W. Grossman (1970)
Limits and colimits in generalized algebraic categories
Jiří Adámek (1976)
Czechoslovak Mathematical Journal
Limits and colimits of convexity spaces
Robert J. MacG. Dawson (1987)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Limits in categories and limit-preserving functors
Věra Trnková (1966)
Commentationes Mathematicae Universitatis Carolinae
Limits in double categories
Marco Grandis, Robert Pare (1999)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Limits in generalized algebraic categories - contravariant case
V. Koubek, P. Pták (1977)
Acta Universitatis Carolinae. Mathematica et Physica
Limits of functors and realisations of categories
Aleš Pultr (1967)
Commentationes Mathematicae Universitatis Carolinae
Linking the closure and orthogonality properties of perfect morphisms in a category
David Holgate (1998)
Commentationes Mathematicae Universitatis Carolinae
We define perfect morphisms to be those which are the pullback of their image under a given endofunctor. The interplay of these morphisms with other generalisations of perfect maps is investigated. In particular, closure operator theory is used to link closure and orthogonality properties of such morphisms. A number of detailed examples are given.
Local extension of maps.
Barr, Michael, Kennison, John F., Raphael, R. (2009)
The New York Journal of Mathematics [electronic only]
Localization for Hausdorff uniform bundles.
Bautista, Serafín, Varela, Januario (2001)
Revista Colombiana de Matemáticas
Locally cartesian closed categories without chosen constructions.
Palmgren, Erik (2008)
Theory and Applications of Categories [electronic only]
Logische Kategorien.
Peter Hájek (1970)
Archiv für mathematische Logik und Grundlagenforschung
L'universalité des semi-fonctions récursives universelles
R. Mijoule (1984)
Diagrammes
Currently displaying 21 – 40 of 40
Previous Page 2