Displaying 441 – 460 of 834

Showing per page

Modules commuting (via Hom) with some colimits

Robert El Bashir, Tomáš Kepka, Petr Němec (2003)

Czechoslovak Mathematical Journal

For every module M we have a natural monomorphism Ψ : i I H o m R ( M , A i ) H o m R M , i I A i and we focus our attention on the case when Ψ is also an epimorphism. Some other colimits are also considered.

Modules commuting (via Hom) with some limits

Robert El Bashir, Tomáš Kepka (1998)

Fundamenta Mathematicae

For every module M we have a natural monomorphism   Φ : i I H o m R ( A i , M ) H o m R ( i I A i , M ) and we focus attention on the case when Φ is also an epimorphism. The corresponding modules M depend on thickness of the cardinal number card(I). Some other limits are also considered.

Monomorphisms in spaces with Lindelöf filters

Richard N. Ball, Anthony W. Hager (2007)

Czechoslovak Mathematical Journal

𝐒𝐩𝐅𝐢 is the category of spaces with filters: an object is a pair ( X , ) , X a compact Hausdorff space and a filter of dense open subsets of X . A morphism f ( Y , 𝒢 ) ( X , ) is a continuous function f Y X for which f - 1 ( F ) 𝒢 whenever F . This category arises naturally from considerations in ordered algebra, e.g., Boolean algebra, lattice-ordered groups and rings, and from considerations in general topology, e.g., the theory of the absolute and other covers, locales, and frames, though we shall specifically address only one of these...

Moore categories.

Rodelo, Diana (2004)

Theory and Applications of Categories [electronic only]

Multi-bimodels

Enrico M. Vitale (1999)

Cahiers de Topologie et Géométrie Différentielle Catégoriques

Natural sinks on Y β

J. Schröder (1992)

Commentationes Mathematicae Universitatis Carolinae

Let ( e β : 𝐐 Y β ) β Ord be the large source of epimorphisms in the category Ury of Urysohn spaces constructed in [2]. A sink ( g β : Y β X ) β Ord is called natural, if g β e β = g β ' e β ' for all β , β ' Ord . In this paper natural sinks are characterized. As a result it is shown that Ury permits no ( E p i , ) -factorization structure for arbitrary (large) sources.

Natural weak factorization systems

Marco Grandis, Walter Tholen (2006)

Archivum Mathematicum

In order to facilitate a natural choice for morphisms created by the (left or right) lifting property as used in the definition of weak factorization systems, the notion of natural weak factorization system in the category 𝒦 is introduced, as a pair (comonad, monad) over 𝒦 2 . The link with existing notions in terms of morphism classes is given via the respective Eilenberg–Moore categories.

Currently displaying 441 – 460 of 834