Star-autonomous functor categories.
We interpret the collection of invertible bimodules as a groupoid and call it the Picard groupoid. We use this groupoid to generalize the classical construction of crossed products to what we call groupoid crossed products, and show that these coincide with the class of strongly groupoid graded rings. We then use groupoid crossed products to obtain a generalization from the group graded situation to the groupoid graded case of the bijection from a second cohomology group, defined by the grading...
This is a survey paper on applications of the representation theory of the symmetric group to the theory of polynomial identities for associative and nonassociative algebras. In §1, we present a detailed review (with complete proofs) of the classical structure theory of the group algebra of the symmetric group over a field of characteristic 0 (or ). The goal is to obtain a constructive version of the isomorphism where is a partition of and counts the standard tableaux of shape ....
Le but de cet article est de généraliser la théorie des foncteurs lisses de Grothendieck afin d’inclure dans ce cadre la théorie des catégories fibrées. On obtient en particulier une nouvelle caractérisation des catégories fibrées.
On introduit une opérade anticyclique définie par une présentation ternaire quadratique. On montre qu’elle admet une base indexée par les arbres binaires planaires. On relie cette construction à la famille des treillis de Tamari en construisant un isomorphisme entre et le groupe de Grothendieck de la catégorie qui envoie la base de sur les classes des modules projectifs et qui transforme la structure anticyclique de en la transformation de Coxeter de la catégorie dérivée de . La dualité...