Displaying 41 – 60 of 92

Showing per page

How to construct a Hovey triple from two cotorsion pairs

James Gillespie (2015)

Fundamenta Mathematicae

Let be an abelian category, or more generally a weakly idempotent complete exact category, and suppose we have two complete hereditary cotorsion pairs ( , ˜ ) and ( ˜ , ) in satisfying ˜ and ˜ = ˜ . We show how to construct a (necessarily unique) abelian model structure on with (resp. ˜ ) as the class of cofibrant (resp. trivially cofibrant) objects, and (resp. ˜ ) as the class of fibrant (resp. trivially fibrant) objects.

Moore categories.

Rodelo, Diana (2004)

Theory and Applications of Categories [electronic only]

Natural dualities between abelian categories

Flaviu Pop (2011)

Open Mathematics

In this paper we consider a pair of right adjoint contravariant functors between abelian categories and describe a family of dualities induced by them.

On n -exact categories

Said Manjra (2019)

Czechoslovak Mathematical Journal

An n -exact category is a pair consisting of an additive category and a class of sequences with n + 2 terms satisfying certain axioms. We introduce n -weakly idempotent complete categories. Then we prove that an additive n -weakly idempotent complete category together with the class 𝒞 n of all contractible sequences with n + 2 terms is an n -exact category. Some properties of the class 𝒞 n are also discussed.

Currently displaying 41 – 60 of 92