Previous Page 2

Displaying 21 – 27 of 27

Showing per page

Distinguishing derived equivalence classes using the second Hochschild cohomology group

Deena Al-Kadi (2010)

Colloquium Mathematicae

We study the second Hochschild cohomology group of the preprojective algebra of type D₄ over an algebraically closed field K of characteristic 2. We also calculate the second Hochschild cohomology group of a non-standard algebra which arises as a socle deformation of this preprojective algebra and so show that the two algebras are not derived equivalent. This answers a question raised by Holm and Skowroński.

Dualization in algebraic K-theory and the invariant e¹ of quadratic forms over schemes

Marek Szyjewski (2011)

Fundamenta Mathematicae

In the classical Witt theory over a field F, the study of quadratic forms begins with two simple invariants: the dimension of a form modulo 2, called the dimension index and denoted e⁰: W(F) → ℤ/2, and the discriminant e¹ with values in k₁(F) = F*/F*², which behaves well on the fundamental ideal I(F)= ker(e⁰). Here a more sophisticated situation is considered, of quadratic forms over a scheme and, more generally, over an exact category with duality. Our purposes are: ...

Currently displaying 21 – 27 of 27

Previous Page 2