Page 1

Displaying 1 – 16 of 16

Showing per page

Radicals which define factorization systems

Barry J. Gardner (1991)

Commentationes Mathematicae Universitatis Carolinae

A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.

Rank additivity for quasi-tilted algebras of canonical type

Thomas Hübner (1998)

Colloquium Mathematicae

Given the category X of coherent sheaves over a weighted projective line X = X ( λ , p ) (of any representation type), the endomorphism ring Σ = ( 𝒯 ) of an arbitrary tilting sheaf - which is by definition an almost concealed canonical algebra - is shown to satisfy a rank additivity property (Theorem 3.2). Moreover, this property extends to the representationinfinite quasi-tilted algebras of canonical type (Theorem 4.2). Finally, it is demonstrated that rank additivity does not generalize to the case of tilting complexes...

Realization of long exact sequences of abelian groups.

Irwin S. Pressman (1990)

Publicacions Matemàtiques

Given a long exact sequence of abelian groupsL: ... → Li-1 →ξi-1 Li →ξi Li+1 → ...a short exact sequence of complexes of free abelian groups is constructed whose cohomology long exact sequence is precisely L. In this sense, L is realized. Two techniques which are introduced to reduce or replace lengthy diagram chasing arguments may be of interest to some readers. One is an arithmetic of bicartesian squares; the other is the use of the fact that categories of morphisms of abelian categories...

Refining thick subcategory theorems

Sunil K. Chebolu (2006)

Fundamenta Mathematicae

We use a K-theory recipe of Thomason to obtain classifications of triangulated subcategories via refining some standard thick subcategory theorems. We apply this recipe to the full subcategories of finite objects in the derived categories of rings and the stable homotopy category of spectra. This gives, in the derived categories, a complete classification of the triangulated subcategories of perfect complexes over some commutative rings. In the stable homotopy category of spectra we obtain only...

Relative Auslander bijection in n -exangulated categories

Jian He, Jing He, Panyue Zhou (2023)

Czechoslovak Mathematical Journal

The aim of this article is to study the relative Auslander bijection in n -exangulated categories. More precisely, we introduce the notion of generalized Auslander-Reiten-Serre duality and exploit a bijection triangle, which involves the generalized Auslander-Reiten-Serre duality and the restricted Auslander bijection relative to the subfunctor. As an application, this result generalizes the work by Zhao in extriangulated categories.

Relative hermitian Morita theory. Part II: Hermitian Morita contexts.

Pieter Verhaeghe, Alain Verschoren (1992)

Publicacions Matemàtiques

We introduce the notion of a relative hermitian Morita context between torsion triples and we show how these induce equivalences between suitable quotient categories of left and right modules.Due to the lack of involutive bimodules, the induced Morita equivalences are not necessarily hermitian, however.

Relative theory in subcategories

Soud Khalifa Mohamed (2009)

Colloquium Mathematicae

We generalize the relative (co)tilting theory of Auslander-Solberg in the category mod Λ of finitely generated left modules over an artin algebra Λ to certain subcategories of mod Λ. We then use the theory (relative (co)tilting theory in subcategories) to generalize one of the main result of Marcos et al. [Comm. Algebra 33 (2005)].

Relatively exact modules

Ladislav Bican (2003)

Commentationes Mathematicae Universitatis Carolinae

Rim and Teply [10] investigated relatively exact modules in connection with the existence of torsionfree covers. In this note we shall study some properties of the lattice τ ( M ) of submodules of a torsionfree module M consisting of all submodules N of M such that M / N is torsionfree and such that every torsionfree homomorphic image of the relative injective hull of M / N is relatively injective. The results obtained are applied to the study of relatively exact covers of torsionfree modules. As an application...

Roots of Nakayama and Auslander-Reiten translations

Helmut Lenzing, Andrzej Skowroński (2000)

Colloquium Mathematicae

We discuss the roots of the Nakayama and Auslander-Reiten translations in the derived category of coherent sheaves over a weighted projective line. As an application we derive some new results on the structure of selfinjective algebras of canonical type.

Currently displaying 1 – 16 of 16

Page 1