Page 1

Displaying 1 – 11 of 11

Showing per page

Hall algebras of two equivalent extriangulated categories

Shiquan Ruan, Li Wang, Haicheng Zhang (2024)

Czechoslovak Mathematical Journal

For any positive integer n , let A n be a linearly oriented quiver of type A with n vertices. It is well-known that the quotient of an exact category by projective-injectives is an extriangulated category. We show that there exists an extriangulated equivalence between the extriangulated categories n + 1 and n , where n + 1 and n are the two extriangulated categories corresponding to the representation category of A n + 1 and the morphism category of projective representations of A n , respectively. As a by-product,...

Higher-dimensional Auslander-Reiten sequences

Jiangsha Li, Jing He (2024)

Czechoslovak Mathematical Journal

Zhou and Zhu have shown that if 𝒞 is an ( n + 2 ) -angulated category and 𝒳 is a cluster tilting subcategory of 𝒞 , then the quotient category 𝒞 / 𝒳 is an n -abelian category. We show that if 𝒞 has Auslander-Reiten ( n + 2 ) -angles, then 𝒞 / 𝒳 has Auslander-Reiten n -exact sequences.

Homological projective duality

Alexander Kuznetsov (2007)

Publications Mathématiques de l'IHÉS

We introduce a notion of homological projective duality for smooth algebraic varieties in dual projective spaces, a homological extension of the classical projective duality. If algebraic varieties X and Y in dual projective spaces are homologically projectively dual, then we prove that the orthogonal linear sections of X and Y admit semiorthogonal decompositions with an equivalent nontrivial component. In particular, it follows that triangulated categories of singularities of these sections are...

How to construct a Hovey triple from two cotorsion pairs

James Gillespie (2015)

Fundamenta Mathematicae

Let be an abelian category, or more generally a weakly idempotent complete exact category, and suppose we have two complete hereditary cotorsion pairs ( , ˜ ) and ( ˜ , ) in satisfying ˜ and ˜ = ˜ . We show how to construct a (necessarily unique) abelian model structure on with (resp. ˜ ) as the class of cofibrant (resp. trivially cofibrant) objects, and (resp. ˜ ) as the class of fibrant (resp. trivially fibrant) objects.

Currently displaying 1 – 11 of 11

Page 1