Calcul des satellites et présentations des bimodules à l'aide des carrés exacts
We present some constructions of limits and colimits in pro-categories. These are critical tools in several applications. In particular, certain technical arguments concerning strict pro-maps are essential for a theorem about étale homotopy types. We also correct some mistakes in the literature on this topic.
Let G be a group, R a G-graded ring and X a right G-set. We study functors between categories of modules graded by G-sets, continuing the work of [M]. As an application we obtain generalizations of Cohen-Montgomery Duality Theorems by categorical methods. Then we study when some functors introduced in [M] (which generalize some functors ocurring in [D1], [D2] and [NRV]) are separable. Finally we obtain an application to the study of the weak dimension of a group graded ring.
À l’origine conçue comme un outil technique, la catégorie dérivée des faisceaux cohérents d’une variété algébrique est apparue lors de ces dix dernières années comme un invariant important dans l’étude birationnelle des variétés algébriques. Des problèmes d’invariance birationnelle et de minimisation de la catégorie dérivée sont apparus, inspirés par la conjecture homologique de symétrie miroir de Kontsevich et le programme de Mori de modèles minimaux pour les variétés algébriques. Nous présenterons...
We extend Rouquier’s categorification of the braid groups by complexes of Soergel bimodules to the virtual braid groups.
The main aim of the paper is to classify the discrete derived categories of bounded complexes of modules over finite dimensional algebras.
Let be a field and a finite-dimensional -algebra of global dimension . We construct a triangulated category associated to which, if is hereditary, is triangle equivalent to the cluster category of . When is Hom-finite, we prove that it is 2-CY and endowed with a canonical cluster-tilting object. This new class of categories contains some of the stable categories of modules over a preprojective algebra studied by Geiss-Leclerc-Schröer and by Buan-Iyama-Reiten-Scott. Our results also...