Factorization, fibration and torsion.
For any module M over an associative ring R, let σ[M] denote the smallest Grothendieck subcategory of Mod-R containing M. If σ[M] is locally finitely presented the notions of purity and pure injectivity are defined in σ[M]. In this paper the relationship between these notions and the corresponding notions defined in Mod-R is investigated, and the connection between the resulting Ziegler spectra is discussed. An example is given of an M such that σ[M] does not contain any non-zero finitely presented...
We introduce the notions of silting comodules and finitely silting comodules in quasi-finite category, and study some properties of them. We investigate the torsion pair and dualities which are related to finitely silting comodules, and give the equivalences among silting comodules, finitely silting comodules, tilting comodules and finitely tilting comodules.
The strong global dimension of a finite dimensional algebra A is the maximum of the width of indecomposable bounded differential complexes of finite dimensional projective A-modules. We prove that the strong global dimension of a finite dimensional radical square zero algebra A over an algebraically closed field is finite if and only if A is piecewise hereditary. Moreover, we discuss results concerning the finiteness of the strong global dimension of algebras and the related problem on the density...
We consider deformations of bounded complexes of modules for a profinite group over a field of positive characteristic. We prove a finiteness theorem which provides some sufficient conditions for the versal deformation of such a complex to be represented by a complex of -modules that is strictly perfect over the associated versal deformation ring.
El artículo es una introducción a la transformación de Fourier-Mukai y sus aplicaciones a varios problemas de móduli, teoría de cuerdas y simetría "mirror". Se desarrollan los fundamentos necesarios para las transformaciones de Fourier-Mukai, entre ellos las categorías derivadas y los functores integrales. Se explican además sus versiones relativas, que se necesitan para precisar la noción de T-dualidad fibrada en variedades de Calabi-Yau elípticas de dimensión tres. Se consideran también varias...