Galois module structure of Milnor -theory in characteristic .
The main results of this paper may be loosely stated as follows.Theorem.— Let and be sums of Galois algebras with group over algebraic number fields. Suppose that and have the same dimension and that they are identical at their wildly ramified primes. Then (writing for the maximal order in )In many cases The role played by the root numbers of and at the symplectic characters of in determining the relationship between the -modules and is described. The theorem includes...
In this paper we extend the holomorphic analytic torsion classes of Bismut and Köhler to arbitrary projective morphisms between smooth algebraic complex varieties. To this end, we propose an axiomatic definition and give a classification of the theories of generalized holomorphic analytic torsion classes for projective morphisms. The extension of the holomorphic analytic torsion classes of Bismut and Köhler is obtained as the theory of generalized analytic torsion classes associated to , being...
Let be a group algebra, and its quantum double. We first prove that the structure of the Grothendieck ring of can be induced from the Grothendieck ring of centralizers of representatives of conjugate classes of . As a special case, we then give an application to the group algebra , where is a field of characteristic and is a dihedral group of order .