Une remarque sur la cohomologie du faisceau de Zariski de la K-théorie de Milnor sur une variété lisse complexe.
We prove that for any ring of Krull dimension not greater than 1 and , the group acts transitively on . In particular, we obtain that for any ring with Krull dimension not greater than 1, all finitely generated stably free modules over are free. All the obtained results are proved constructively.
In this paper, we shall discuss possible theories of defining equivariant singular Bott-Chern classes and corresponding uniqueness property. By adding a natural axiomatic characterization to the usual ones of equivariant Bott-Chern secondary characteristic classes, we will see that the construction of Bismut’s equivariant Bott-Chern singular currents provides a unique way to define a theory of equivariant singular Bott-Chern classes. This generalizes J. I. Burgos Gil and R. Liţcanu’s discussion...